Hands-free Automated Cardiopulmonary Resuscitation (CPR) device

A Project By:

providing Integrated Technology Solutions & Partnerships

(concept development & ideation)

(production & distribution)

Cardiac arrest

(SUDDEN UNEXPECTED LIFE-THREATENING EMERGENCY)

Definition : "electrical disturbance which causes the heart to stop

beating"

Symptoms : patient collapses, becomes unresponsive

usually shows no breathing

Consequence: deprives vital organs of blood flow and hence oxygen

can cause severe and irreversible damage

to brain **WITHIN NINE MINUTES**

Death in > 90% cases in out-of-hospital settings

Cardiac arrest = Most important cause of Sudden Cardiac Death

What is CPR?

Cardiopulmonary resuscitation (CPR) = "an emergency lifesaving procedure performed when the heart stops beating"

Consists of: 100-120 chest compressions/min of 2-2.4 inch depth each

30:2 = chest compressions: breaths ratio

(As per NHCPS 2015 - 2020 BLS Guidelines)

*** Chances of survival <u>improve</u> by <u>2-3 times</u> when CPR is provided within 4-6 minutes after cardiac arrest

CPR = a crucial step in the chain of survival American Heart Association (AHA)

COVID19 and Cardiac Arrest

- ** Massive surge (> 50%) in cases of cardiac arrest across the globe because:
- ➤ Direct effect of COVID-19 infection on heart, especially in patients with preexisting heart disease
- hesitancy by people to call emergency medical service providers
- reluctance on the part of bystanders to perform CPR

** Several anecdotes of Covid19 cases where cardiac arrest has been the presenting feature

CPR in the era of **COVID19** pandemic.....

Prior to this pandemic, survival had improved due to prompt use of chest compression and defibrillation

However,

CPR is an inherently risky activity because involves many steps that can aerosolize the virus.

NOW the **CHALLENGE** is

Ensure that patients with or without COVID-19 who experience cardiac arrest get the best possible chance of survival without compromising the safety of rescuers

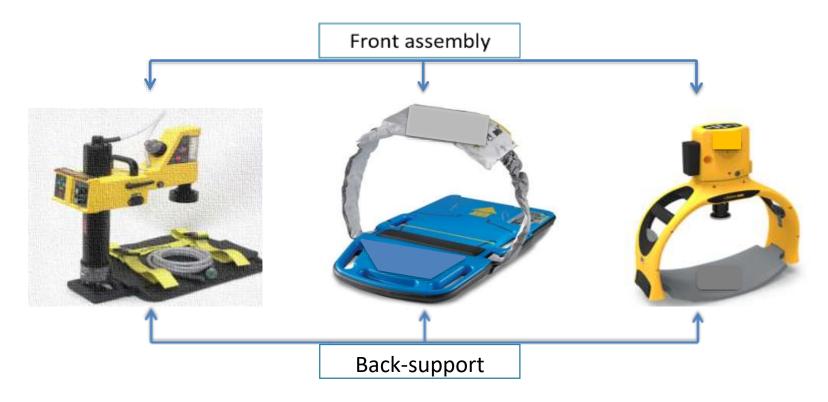
The **NEED** of the hour

"Hands-free Fully Automated Cardiopulmonary Resuscitation (CPR) Device"

Other problems specific to Indian medical system...

- Scarcity of trained healthcare workers (doctors, nurses & paramedical staff)
- Poor doctor-to-patient ratio → 1:1700 at present Hence,
 - > 99% patients don't receive appropriate CPR especially in rural areas
- Underdeveloped emergency response system → medical assistance arrives extremely late. Mortality increases by 10% with each passing minute Hence,

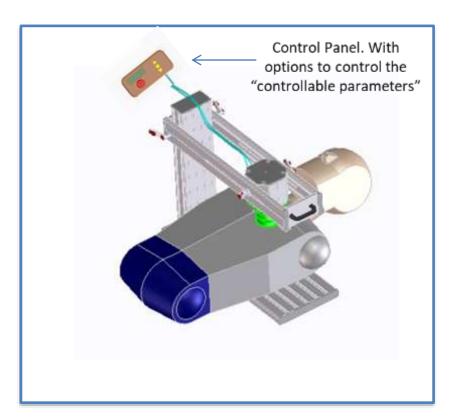
poor survival rate

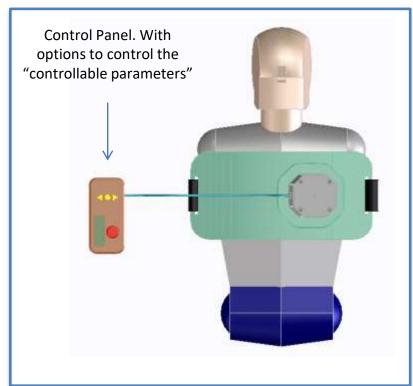

 No mechanical CPR-providing device currently available in India which is designed specifically to fulfill the requirements in Indian set-up

Problems in available CPR devices

- Majority manually operated devices requiring prolonged contact with the patient → So healthcare workers exposed to a significant risk of contracting the COVID-19 and other contagious infections
- Many interruptions occur while giving CPR manually or with the help of manual devices. "Care-giver's fatigue" = an important cause → poor quality CPR
- Very few automated devices available, but they have following shortcomings:
 - ➤ Require dust-free, water-free environment for functioning
 - ➤ Require regular servicing & maintenance
 - ➤ Manufactured abroad → very expensive
 - ➤ None of them provide facilities to maintain Airway and Breathing

Another important short-coming


Automated CPR devices – (1) patient - lifted and placed on 'back-support' (2) 'front assembly' strapped to back-support



In addition to increase in the risk of exposure to infection when rescuers lift patients while setting up the above assembly this movement,

Increases risk of causing and/or aggravating cervical spine injury in the patient

Fully automated, Hands-free CPR device

Proposed CPR device (s)

Advantages of Our Solution...

✓ Fully automated portable device for use by minimally trained persons \rightarrow 1-2 medical/paramedical staff sufficient for providing emergency care

√ "Hands-free" device with 8 hours battery back-up

Minimizes the risk of transmission of infection to care-givers

→ **No interruptions** in CPR during transport. Rescuers don't need to use strength to give chest compressions → can focus on other aspects of emergency resuscitative care → **Good quality CPR**

Other Advantages....

- ✓ Provision for maintaining airway and breathing
- ✓ In proposed CPR device, 'front assembly' not strapped to any 'back-support' → No need to move the patient for effective chest compressions
- ✓ Cervical cushion to stabilize the cervical spine

Minimizes the risk of causing and/or aggravating Cervical Spine Injury

- ✓ Made in India Sturdy design, Appropriate for use in Indian set-up.
 - Does not require dust-free, water-free environment.
 - Washable parts, regular servicing & maintenance not required
 - Material to be used easily available in Indian market and having medical approval.

Suitable for use at:

- 1. Rural and urban medical services for use at sub-center level, primary health care level as well as emergency services department in secondary and tertiary health-care level
- 2. Ambulances, paramedical services providing organizations
- 3. Military and para-military forces, police stations, Fire stations & brigades
- 4. Hospitality industry hotels, restaurants
- 5. Universities with large campuses, Large housing societies
- 6. Transport companies Airlines, Volvos bus services, Ola cabs & Uber ambulance model, Train, Dockyards
- 7. Shopping malls, commercial complexes, industries

Scalability

- Manufacturing and production of automated CPR devices
- Developing advanced versions integrated with Automated External Defibrillator (AED)**
- Introduction of Artificial Intelligence (AI)
- Developing a "Holistic Basic life Support" system with an aim to make existing emergency medical services more efficient

References:

Lakkireddy DR, Chung MK, Gopinathan nair R, Patton KK, Gluckman TJ, Turagam M, Cheung J, Patel P, Sotomonte J, Lampert R, Han JK, Rajagopalan B, Eckhardt L, Joglar J, Sandau K, Olshansky B, Wan E, Noseworthy PA, Leal M, Kaufman E, Gutierrez A, Marine JM, Wang PJ, Russo AM, Guidance for Cardiac Electrophysiology During the Coronavirus (COVID-19) Pandemic from the Heart Rhythm Society COVID-19 Task Force; Electrophysiology Section of the American College of Cardiology; and the Electrocardiography and Arrhythmias Committee of the Council on Clinical Cardiology, American Heart Association, Heart Rhythm (2020), doi: https://doi.org/10.1016/j.hrthm.2020.03.028.

Tagermann V (2020) Many COVID-19 Patients Are Dying from Cardiac Arrest. [Futurism. 2020 online] Available at: https://futurism.com/neoscope/covid-19-patients-cardiac-damage [Accessed 18 June 2020].

Business Insider. (2020, June 16) Cop Who Died Of Cardiac Arrest In K'taka Found To Have COVID-19. [online] Available at: https://www.businessinsider.in/india/news/cop-who-died-of-cardiac-arrest-in-ktaka-found-to-have-covid-19/articleshow/76401174.cms [Accessed 18 June 2020].

Mahase Elisabeth, Kmietowicz Zosia. Covid-19: Doctors are told not to perform CPR on patients in cardiac arrest BMJ 2020; 368: m1282

Cox, C. E. (2020, April 14). CPR in COVID-19: Keep Safe in the Setting of Cardiac Arrest. Available at : https://www.tctmd.com/news/cpr-covid-19-keep-safe-setting-cardiac-arrest [Accessed on June 18, 2020]

Mundell, E. J. (2020, April 30). Cardiac Arrests On the Rise During COVID-19 Crisis. *WebMD Health Day Reporter*. Available on: https://www.webmd.com/lung/news/20200430/cardiac-arrests-on-the-rise-during-covid-19-crisis# [Accessed on June 18, 2020]

Remino C, Baronio M, Pellegrini N, Aggogeri F, Adamini R (2018) Automatic and manual devices for cardiopulmonary resuscitation: A review. Advances in Mechanical Engineering 2018, Vol.10(1)1–1 The Author(s) 2018 DOI:10.1177/1687814017748749 journals.sagepub.com /home/ad

Pereira ADL, Narayan G, Murty S. Survival after cardiopulmonary resuscitation and factors influencing it in the emergency department of a tertiary care hospital in Bangalore, India. J Evolution Med Dent Sci 2016;5(3): 173-176, DOI: 10.14260/jemds/2016/40

Srivatsa, U., Swaminathan, K., Sithy Athiya Munavarah, K., Amsterdam, E. and Shantaraman, K. (2016). Sudden cardiac death in South India: Incidence, risk factors and pathology. *Indian Pacing and Electrophysiology Journal*, 16(4), pp.121-125.

Honnekeri, B., Lokhandwala, D., Panicker, G. and Lokhandwala, Y. (2014). Sudden Cardiac Death in India: A Growing Concern. Journal of the association of physicians of India, Volume 62 pages 36 - 40

NHCPS.com. 2020. 2015 - 2020 BLS Guideline Changes. [online] Available at: https://nhcps.com/lesson/2015-bls-guideline-changes/ [Accessed 18 June 2020].

Momin A. (2019). Sudden Cardiac Arrest in India: A Growing Concern. Available at: https://www.tricog.com/2018/05/08/sudden-cardiac-arrest-in-india-a-growing-concern/ [Accessed on 18 June 2019].

Thank You!